1 Modular Practice Solve the following modular arithmetic equations for x and y. - (a) $9x + 5 \equiv 7 \pmod{11}$. - (b) Show that $3x + 15 \equiv 4 \pmod{21}$ does not have a solution. (c) The system of simultaneous equations $3x + 2y \equiv 0 \pmod{7}$ and $2x + y \equiv 4 \pmod{7}$. (d) $13^{2019} \equiv x \pmod{12}$. (e) $7^{21} \equiv x \pmod{11}$. ## 2 When/Why can we use CRT? Let $a_1, \ldots, a_n, m_1, \ldots, m_n \in \mathbb{Z}$ where $m_i > 1$ and pairwise relatively prime. In lecture, you've constructed a solution to $$x \equiv a_1 \pmod{m_1}$$ $$\vdots$$ $$x \equiv a_n \pmod{m_n}.$$ Let $m = m_1 \cdot m_2 \cdots m_n$. 1. Show the solution is unique modulo m. (Recall that a solution is unique modulo m means given two solutions $x, x' \in \mathbb{Z}$, we must have $x \equiv x' \pmod{m}$.) | 2. | Suppose m_i 's are not pairwise relatively prime. Is it guaranteed that a solution exists? Prove or give a counterexample. | |----|---| | | | | 3. | Suppose m_i 's are not pairwise relatively prime and a solution exists. Is it guaranteed that the solution is unique modulo m ? Prove or give a counterexample. | ## 3 Mechanical Chinese Remainder Theorem In this problem, we will solve for x such that $$x \equiv 1 \pmod{2}$$ $$x \equiv 2 \pmod{3}$$ $$x \equiv 3 \pmod{5}$$ (a) Find a number $0 \le b_2 < 30$ such that $b_2 \equiv 1 \pmod 2$, $b_2 \equiv 0 \pmod 3$, and $b_2 \equiv 0 \pmod 5$. (b) Find a number $0 \le b_3 < 30$ such that $b_3 \equiv 0 \pmod{2}$, $b_3 \equiv 1 \pmod{3}$, and $b_3 \equiv 0 \pmod{5}$. (c) Find a number $0 \le b_5 < 30$ such that $b_5 \equiv 0 \pmod{2}$, $b_5 \equiv 0 \pmod{3}$, and $b_5 \equiv 1 \pmod{5}$. (d) What is x in terms of b_2 , b_3 , and b_5 ? Evaluate this to get a numerical value for x.